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SOLVING THE SIMPLEST INTEGRAL EQUATION FORMS EXACTLY ON LIMIT
RECURRENCE WITH APPLIED THEIR BEING CONTRACTIVE MAPPINGS

There have been proved 17 theorems on solving exactly the simplest integral equation forms of the operator
mapping o as the equation X(t) = [X(t)] , being contractive. The proved on limit recurrence unique solutions have

been displayed in the pre-conclusion table.
Hoka3zaHo 17 meopem Mo moyHoMy peweHuro npocmeliwiux hopmM UHMe2pasibHO20 ypasHeHUsi om ornepamopHO20

omob6paxeHus o Kak ypaeHeHus X(t)z@Qf [X(t)] , fenAwuUMcs cxumarouwuMm. [JokazaHHble C UCIMOJ/Ib308aHUEM

2paHuUY4HoOl peKypcuu peweHusi ompaxeHbl 8 mabnuuye neped 3ako4YeHUeM.
Key words: operator mapping, contractive mapping, metric, metric set, metric space, functional space, integral
equation, limit recurrence, approximate solution, unique fixed point, unique solution, mapping kernel, zeroth approximation,

the N -th approximation, geometrical progression sum, [O; 1] -defined measurable functions.

Paper specification

There is a broad nature scope of applying the operator equations, which solutions are found mostly in
numerical ways. Some narrowed class of these equations is concluded within the operator mapping o/ of a metric set
X ,, into itself:

x(t)=c# [x(t)] Vx(t)e X, by teMcR, (1)

where M — R is supposed to be a measurable subset of the real axis [1, 2]. Operator equations of the type (1) with
respect to the variable X(t)e X, may be solved into X'(t)e X,, numerically, if just the operator o is a

contractive mapping, that is
px, (#[% ()] o [x (1) ]) < apx,, (% (1), % (1)) )

for the existing o €(0;1) on the metric py VX (t)eX,, and VX, (t)e X, as oZ[x(t)]e X, and
| x,(t)]e X, also[3—6].
Though the particularity of the operator mapping (1) in the integral equation [7, 8]

x(t) = f(t)+jK(t, s)x(s)ds 3)

form by the unknown function X(t) e X, [0:1] known function f (t) e X, [0:1] and the contractive mapping known kernel
K(t,s)e X, 1% X[p,p» solution X (t) of (3) has a great many of practiced branches. And finding it for some

highlighted cases of the known function f (t)e X,y and the kernel K (t,s)e X, % X[y, is going to be papered.

Analysis of the antecedent fundamentals

Assume that the mapping of the space X [0:1] into itself in the right member of (3) is contractive. Then, taking

% (t) € X, into recurrence

X, (t)= f(t)+JK(t, $)X,_,(s)ds “)

by neN due to the principle of contracting mappings, will get the approximate solution X’ (t) R X, (t) for as high

ne N as possible or acceptable. Besides, this solution is exact for the existing limit
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X (t)=limx, (t)= lim{ f (t)+j K(t, s)x,, (s)ds} . 5)

nN—o nN—o0

Certainly, it is impossible to solve (3) as (5) for the kernel K(t, S) e X, [0:1] XX'[O; 1 general type. But in some specified

cases of such kernel and function f (t) e X, [0:1] there is the opportunity to find the exact solution (5).

Investigation goal

The being initiated paper goal is to substantiate the exact solution (5) in the following simplest integral
equations (3):

x(t)= a+bjx(s)ds , 6)

x(t):at+bjx(s)ds, 7

x(t):a+bjtx(s)ds, (8)

x(t)=at+b.1[tx(s)ds, )
0

x(t)=a+bjsx(s)ds, (10)
0

x(t)=at+bj‘sx(s)ds, (1D

x(t):a+bjtsx(s)ds, (12)

x(t):at+bj.tsx(s)ds, (13)

whereupon there ought to be solved the generalized (6), (8) as

1
x(t):a+bjt“x(s)ds by =0, (14)
0
the generalized (7), (9) as
1
x(t):at+bIth(s)ds by q=0, (15)
0
the generalized (6), (10) as
1
x(t)=a+bj‘smx(s)ds by m>0, (16)
0

the generalized (7), (11) as

Collection of Scientific Papers of Applied Math and Computer Technologies Faculty
of Khmelnytskyy National University / 2010, N. 1 (3)



Applied Math

1
x(t)=at+bjsmx(s)ds by m>0, (17)
0
the generalized (8), (12) as
1
x(t):a+bjtsmx(s)ds by m>0, (18)
0
the generalized (9), (13) as
1
x(t):at+bjtsmx(s)ds by m>0, (19)
0
the generalized (18) as
1
x(t)=a+bjtqsmx(s)ds by q=0, m>0, (20)
0
the generalized (19) as
1
x(t):at+bJ.tqsmx(s)ds by q=>0, m>0, 2n
0

and the generalized (21) globally in polynomializing f (t) part as

p 1
x(t)=Zaiti+bjtqs’“x(s)ds by peNU{0}, q>0, m>0. (22)
i=0 0

Actually, the equation (22) generalizes equations (6) — (21). The substantiation should include bounding the number

parameters a€R, 8 e R Vi=0,p and beR of the function f(t)e X,y and the kernel K (t,s)e X0, % X
correspondingly.
Solving the integral equation (6)
Theorem 1. The mapping in (6) has the unique fixed point X" (t) e X, [0:1]° that is the solution
X (t)=—2 (23)

of this equation by aeR\{0} and |b| <1.

Proof. Even not assured in contractiveness of the mapping in (6), there are no restrictions on applying the
recurrence (4). Take the zeroth approximation

X, (t)=0 Vte[0;1] (24)
and will get
1 1
xl(t):a+bjx0(s)ds:a+bIOds:a, (25)
0 0
1 1
xz(t)=a+bjx1(s)ds=a+bjads=a+ab, (26)
0 0
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a+bj ds—a+bJ‘ a+ab)ds=a+ab+ab’,
X, (t)= a+bJ‘x3 ds_a+bI a+ab+ab2)ds—a+ab+ab2+ab3

So, for neN\{1} the n-th approximation

a+bj ds—a+bj(a+2ab st—a+Z:abk

giving the geometrical progression in the last member. This progression is summable by |b| <1 and then
n-1 n-1 a
X (t)=limx, (t)=lim| a+ » ab* |=alim| 1+ Y b* |=——.
( ) n—w n( ) n—»oo( ; j n—m( Z ] 1-b
For avoiding triviality, the parameter a # 0, thatis ae R\ {O} . The theorem has been proved.

Solving the integral equation (7)

Theorem 2. The mapping in (7) has the unique fixed point X" (t) € X [o.1]» that is the solution

of this equation by aeR\{0} and |b|<1.

Proof. Not restricted on applying the recurrence (4), take the zeroth approximation (24) and get

X (t) at+bjx0 ds_at+bJ0ds_at

at+bj ds—at+bJ.asds at+al _at+a7b
2l 2 2
at+b.[ ds_at+bj.(as+—b)ds—at+ab +£=at ab+£,
2 . 2
2 21 2 3 2
at+bJ. ds_at+bJ. as+—b+£ ds = t+ab— ﬂ ﬂ: t+a—b an
2 2, 2 2

So, for ne N\{1} the n-th approximation

21
at+bJ. s)ds —at+bj(as+ b"st—atJrab—
Z 0

—ﬁt—z“bk —at+—(1+2b ]

ab 3
+7;b =

ab’

7

giving the geometrical progression in the last member sum. This progression is summable by |b| <1 and then

@7

(28)

29

(30)

(€2))

(32)

(33)

(34)

(35)

(36)
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X' (t) = lim x, (t )_iﬁ{au—(qukﬂ

_at+—hm{l+2ka—at — ﬁ—at+2(?bb). (37)

For avoiding triviality, the parameter a € R \{ } . The theorem has been proved.

Solving the integral equation (8)

Theorem 3. The mapping in (8) has the unique fixed point X" (t) € X, i, that is the solution

[o:1]°

. 2ab
t +—t 38
X (t)=a+>— (38)
of this equation by aeR\{0} and |b|<2.

Proof. Not restricted on applying the recurrence (4), take the zeroth approximation (24) and get

1 1
xl(t):a+bftx0(s)ds:a+bIt~Ods:a, 39)
1 1
xz(t)za+bjtx1(s)ds:a+bItads:a+abt, (40)
0
1 1 sz1 ab2
x3(t)=a+bItxZ(s)ds:a+bjt(a+abs)ds:a+abt+ab2t7 :a+abt+7t, (41)
0 0
1 1 ab2
x4(t)=a+bjtx3(s)ds=a+bJ.t[a+abs+Tsjds=
2! 2 |! 2 3
—asabt+abtS| +ab'tS| —arabt+ 2+ (42)
2y, 41, 2 4

So, for ne N\ {1} the n -th approximation

n-2 1

ab“s < b* s
a+bjtx ds—a+bj a-+ E ds:a+abt+abt2 _
( ( — Zk—lJ — Zk—l 2

n-2 ., g
—a+abt+ath—:a+abt[l+Zg J (43)

k=1

giving the geometrical progression in the last member sum. This progression is summable by |b| <2 and then

n-2 . g
X (t)=limx, (t)= lim{a+ abt(l + Z;—kﬂ -

k=1

n-2 , g
=a+abtlim| 1+ b —a+abt ! :a+2;abt. (44)
now 2 b 2—b

k=1

For avoiding triviality, the parameter a € R\ {0} . The theorem has been proved.

Solving the integral equation (9)

Theorem 4. The mapping in (9) has the unique fixed point X (t) € X, that is the solution

[o:1°
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X (t)=—"—t (45)

of this equation by aeR\{0} and |b|<2.

Proof. Note that the right member in (9) may be factored out with t. Applying the solution procedure of the
integral equation (6), there are statements

X (t) at+bj.tx0 s)ds= t[a+bj dsJ_{a+bJ‘0ds]_at (46)

2l
t{a+bj. dsJ—t[a+bjasds]—{a+ab

0] [a+a7bj at(l+%}, 47)
t):t[a+bfxz(s)dsJ:t[a+bIs(a+%b)ds}=t[a+ab§1

0

s
+ab’

21
2
2 2
:t(a+a7b+%j:at(l+g+b?], (48)
1
:{a+bJ‘x3(s)dsJ:
0
1 ) 2l
=t a+bJ.as 1+9+b— ds|=t|a+ab>
d 2 4 2

0

1
+abSi =
8 0

2 3 2 3
= a+a—b+£+£ =at 1+9+b—+b— . (49)
2 4 2 4

8
So, for ne N\ {1} the n -th approximation
X, (t) = t[a+bjxn1 (S)ds] :t{a+bjas[l+zzz:2—ijdsJ = at[l+|:b+bn22:2—t}§l J =
0 0 =1 k=1 0
=at{l+g+g;2k]—at[l+g+2j g}:a{ngg—:], (50)
giving the geometrical progression in the last member sum. This progression is summable by |b| <2 and then

n-1 | n-1 |
. . . Z b . Z b at 2a
X (t):}lgl}oxn (t):}]gg[at(l‘l‘ ?J}:at}]g&(l‘i‘ ?J:—b:mt (51)
2

+abzi
4

1=1 1=1

For avoiding triviality, the parameter a € R\ { 0} . The theorem has been proved.

Solving the integral equation (10)

Theorem 5. The mapping in (10) has the unique fixed point X" (t) € X, ,;, that is the solution

[0:1]°
X (t) =22 (52)

of this equation by aeR\{0} and |o|<2.
Proof. Not restricted on applying the recurrence (4), take the zeroth approximation (24) and get
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1 1
xl(t):a+bjsx0(s)ds=a+bJ.s~0ds=a, (53)
0
1 1 21 b
xz(t):a+bj.sxl(s)ds:a+b'|.sads:a+ab% :a+a7, (54)
0 0 0
1 1 2 2l 2
x3(t):a+bjsx2(s)ds:a+bfs(a+a7b)ds:a+abs? rap? > :a+a7b+%, (55)

2
X, (t) a+bJ.sx ds_a+bj (a+a—b+%]ds_

AL

s 2|
=a+ab—]

tap’
0 8

2 3
=a+a7b+%+£. (56)

+abzs—
4 0

0

So, for ne N\ {1} the n-th approximation

n-2 Kk
ab
a+bjsx ds—a+bjs a+ ds =
1 n-2 ok
ab b
:a+—+ab2 —_—=
2|, 2 2k

ab n— bk+l n-l bl n-l bl
:a+7+aZ:2k+1 :a+aZ?=a 1+Z? , (7

giving the geometrical progression in the last member sum. This progression is summable by |b| <2 and then

n-1 | n-1 .|
. . . b . b 1 2a
X (t):},ﬂxn(t):}]ﬂ[a(l+ E ?H:arlgg{br E ?J:a b=3 5 (58)

1=1 1=1 1-—
2

appeared to be just the factor of t in the integral equation (9) solution (45). For avoiding triviality, the parameter
aeR\{0} . The theorem has been proved.

Solving the integral equation (11)

Theorem 6. The mapping in (11) has the unique fixed point X" (t) e X, [0:1]° that is the solution

. 2ab
X (t)=at+ 59
(H=at+355) (5
of this equation by aeR\{0} and |b|<2.
Proof. Not restricted on applying the recurrence (4), take the zeroth approximation (24) and get
1 1
xl(t):at+bjsx0(s)ds:at+bjs-0ds:at, (60)
1 1 S3 1 ab
X, (t)=at erJ‘sx1 (s)ds =at +b_[sasds =at+ ab? =at 3 (61)
0 0
1 1 ab s s?| ab ab’
X, (t)=at +bJ‘sx2 (s)ds=at +bJ‘s[as+?jds = at+ab? +ab’— = at+?+T, (62)
0 0 0 0
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2
X, (t) at+bjsx ds—at+bJ. [as+a—b+%]ds—

1 1

3

2

S

=at+ab—]
3

s
+ab’ =
0

2 3
_ar 32,30 A (63)

+ab35—
12 3 6 12

0 0

So, for ne N\{1} the n-th approximation

X, (1) at+bJ.sx ds_at+bjs(as+z jds—at+ +abz 2“_
n-2 , g

_at+—[l+zg—kj, (64)
k=1

giving the geometrical progression in the last member sum. This progression is summable by |b| <2 and then

. . . ab[ . <Ab* ab . < b ab 1 2ab
X (t)=ggxn(t):%ﬂ[aw?(ngz—kﬂ:at+?}]gr;(l+227]:at+?-1_b :at+3(2_b). (65)
2

k=1

For avoiding triviality, the parameter a € R\ {0} . The theorem has been proved.

Solving the integral equation (12)

Theorem 7. The mapping in (12) has the unique fixed point X" (t) € X, that is the solution

[o:1]>

t (66)

of this equation by aeR\{0} and |b|<3.
Proof. Not restricted on applying the recurrence (4), take the zeroth approximation (24) and get

1 1
xl(t)=a+bj.tsx0(s)ds=a+bJ.ts-0ds=a, (67)
( s?| ab
xz(t):a+bJ.tsx1(s)ds: =a+—t, (68)
) 2], 2
1 ] ab s?| s ab, ab’
x3(t):a+bjtsx2(s)ds:a+bjts(a+—sjds:a+abt— +ab’t—| =a+—t+—rt, (69)
g d 2 2 0 6 o 2 6
1 1 ab  ab’
x4(t):a+bjtsx3(s)ds:a+bjts(a+—s+—sts:
d g 2 6
2! 3|t 3! 2 3
—a+abt>| +abt] rapit :a+a—bt+£t+£t. (70)
2 o 0 1 0 2 6 18

So, for ne N\ {1} the n-th approximation

3 1

+ab tz 3
0
—a+ ab ath——a [1+n22:2—:}, 71

k=1

X, (t) a+bJ.tsxnl ds—a+bJ.ts(a+a—bs bst—a+abt—
k=0

0
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giving the geometrical progression in the last member sum. This progression is summable by |b| <3 and then

n-2 , g n-2 .\ g
x*(t)=%i_r)réxn(t)zlgglaJra?bt(Hzg—kﬂ:a+a7bt£i_)r£10[l+zg—kJ=a+%bt- 1b=a+2(33a_bb)t.
3

k=1 k=1 1-—
For avoiding triviality, the parameter a € R\{0} . The theorem has been proved.
Solving the integral equation (13)

Theorem 8. The mapping in (13) has the unique fixed point X" (t) e X [o.1]» that is the solution

of this equation by ae R\ {0} and |b| <3.
Proof. Not restricted on applying the recurrence (4), take the zeroth approximation (24) and get

1 1
X (t)=at+ bJ‘tsx0 (s)ds=at+ bjts-Ods =at,
0 0

1 1 3]
X, (t)= at+b'[tsx1 (s)ds= at+bItsasds —at+abt>| = at+a—bt,
3 3

0 0

0

1

2
a2, A
39

0

1 1 ab S s
X, (t)=at+b|tsx,(s)ds=at+b|ts| as+—s |ds=at+abt—| +ab’t—
’ ) ) 3 3, 9

1 1 2
x, (1) = at+bjtsx3(s)ds :at+bjts[as+a?bs+%sts=
0 0

st st s
=at+abt? +ab’t>| +ab’t—
0

2 3
=at+a—bt+£t+£t.
3 9 27

0 0

So, for ne N\ { l} the n -th approximation

3|

1 1 n-3 | k 3! k
X, (t)=at+ bJ‘tsxm (s)ds=at+ bIts as +"jl—bszb—k ds=at+abt>| + abztzb—k~s— =
0 0 3 k=0 3 3 0 k=0 3 9 0

ab, ab® < b b b’ b bl . bx=b¥ bl . <3b'
=at+—t+—t )y —=at|l+—+— ) — |=at|l+=|1+= ) — ||=at|[+=|1+ ) — ||,
39 Z:3k 3 9 &3 3 323k 3 Z3'

k=0 k=0 1=1

giving the geometrical progression in the last member sum. This progression is summable by |b| <3 and then
. , : b, <x~b b.. < b
X (t)z%ﬂxn(t)zgﬂlat[l+g{l+;37 =at| 1+ lim 1+Z‘3_' -

3
For avoiding triviality, the parameter a € R\{0} . The theorem has been proved.

Solving the integral equation (14), generalizing the equations (6) and (8)

(72)

(73)

(74)

(75)

(76)

(77

(78)

(79
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Theorem 9. The mapping in (14) has the unique fixed point X" (t) € X, ,;, that is the solution

[0:1]

. ab(gq+1
X (1) —ar 2200 (80)
q+1-b
of this equation by ae R\ {O} and |b| <q+1.
Proof. Not restricted on applying the recurrence (4), take the zeroth approximation (24) and get
X (t) a+bj.th0 ds_aerJ-tq -0ds=a (81)
a+bJ‘tq ds_aerJ‘tqads—a+abtq (82)
1
q+1 abz
a+bJ‘tq ds—aerjtq (a+abs®)ds = a+abt’ +abiti 2| —asabtt+ 22 t9 (83)
g+1 g+1
ab’
a+bJ.tq ds—a+bJ‘tq a+abs?+——s% |ds =
q+1
q+1 1 q+1 2 3
=a+abt? + ab’t* S—l +ab’t* ~| =a-+abt" +£1tq +L2t“I ) (84)
q+1j, (q+1) , q+ (q+1)
So, for ne N\ {1} the n -th approximation
n-2 Kod n-—2 k g+l 1
a+bJ‘tq ds—a+bJ-tq a+ LSH ds:a+abtq+abtqz:b—IH-S =
= (a+1) o (a+1) 0 a+d,
5 {15 )
=a-+abt? +abt? =a+abt?|1+ ) —— (85)
k k |
= (a+1) = (q+1)
giving the geometrical progression in the last member sum. This progression is summable by |b| <(g+1 and then
n-2 bk n-2 bk
X (t)=limx, (t)=lim|a+abt| 1+ » —— |[=a+abtlim| 1+ » —— |=
now 1 n—w ;(q-Fl) n—w ;(q-Fl)
ab(q+1
=a+abtt ! =a+ (@ )tq (86)
- b q+1-b
q+1

For avoiding triviality, the parameter a € R\ {0} . The theorem, generalizing the Theorem 1 and Theorem 3, has been

proved.
Solving the integral equation (15), generalizing the equations (7) and (9)

Theorem 10. The mapping in (15) has the unique fixed point X" (t) € X, ;, that is the solution

[o:1]>
ab(q+1)

q
2(q+1-D)" ®7)

X (t)=at+

of this equation by aeR\{0} and |b|<q+1.
Proof. Not restricted on applying the recurrence (4), take the zeroth approximation (24) and get
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X, (t) at+bJ.tq ds—at+bJ‘tq -0ds =at, (88)
q q qS 1 ab q
xz(t)zat+bj.t xl(s)ds:at+bjt asds = at + abt 5 :at+7t , (89)
0
ab Sz1 g+l
X (t) aterjtq ds—at+bJ.t“(as+ jds:at+abtq— +abt' ——| =
2 2}, 2(q+1)
0
2
_atr o, A e (90)
2 2(q+)
2
X, (t) at+bJAtq ds—at+bJ‘tq as+abs +qu ds=
27 " 2(q+1)
21 q+1 ! q+l 2 3
—at+abt® 2| +ap’t" vabts S |t gy B e, A q ©1)
2|, 2(q+1)|, 2(q+1)°|, 2 2(g+l)  2(g+l1)

So, for ne N\ { l} the n -th approximation

n-3 k
X (t) at+bJ‘tq ds_at+bJ.tq [as+a—b " kquds:
245 (q"'l)

2! n-3 k g+l n-3 k+1
—at+abt? > +ab2tqz b k-s— =at+ a—btq a_btqzb_mz
2], k=0 (q+1) 2(q+1)0 2 2 = (q+1)

ab, ab. x> b — b
=at+—t% +—t° —at+—tq (92)
2 2 ;(qﬂ) { Z ]

1=1 q+1

giving the geometrical progression in the last member sum. This progression is summable by |b| <g+1 and then

. ab — b ab - b
X (t)=limx, (t)=lim at+—tq{l+ ] =at+—t* lim[l+ J:
n—>w n—»ool: 2 ;(q+1)l 2 n—>w ;(q_'_l)l

ot P L g, (@) o 93)
2 b 2(q+1-b)

q+1

For avoiding triviality, the parameter a e R\{O} . The theorem, generalizing the Theorem 2 and Theorem 4, has been

proved.
Solving the integral equation (16), generalizing the equations (6) and (10)

Theorem 11. The mapping in (16) has the unique fixed point X' (t) € X [0.1]» that is the solution

. a(m+1)
X (t)= 94
® m+1-b O
of this equation by ae R\ {O} and |b| <m+1.
Proof. Not restricted on applying the recurrence (4), take the zeroth approximation (24) and get
1 1
xl(t):a+b‘[smx0(s)ds:a+b'|.sm~0ds:a, (95)
0
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m+1 1

1 1
m m S ab
xz(t)=a+b_([s xl(s)ds:a+b'(|:s ads:a+aberl

—a+——, (96)
m+1

1 1
X (t)= a+bj.smx2(s)ds = a+bJ-srn (a+a_bjds =
0 0

m+1
m+t |1 gml |1 ab ab?
—a+ab +ab’ - =a+ + =, 97)
m+ll,  (mel)P| 0 mel (med)
1 1
b ab?
t)= bj'm ds = bjm an LA g
X, (t)=a+ Os X;(s)ds=a+ 0s (a+m+l+(m+1)2] s
1
m+1 m+1 m+1 2 3
=a+ab +ab’ 2| rab’ > 3| =a+ ab + ab =+ ab - (98)
m+ll, T (m+1) (m+1)'| mel (me1) (me1)

So, for ne N\{1} the n-th approximation

1
X, (t) = a+bJ‘smxn_1 (s)ds=
0

! n-2 k m+1 |!
=a+bJ.sm a+ ab - ds=a+abS =
e (m+1) m+10 - (m+1) m+1

ab n-2 bk+1 n-1 b| n-1 b|
—a+——+a ) ————=a+a =all+ , (99
m+1 < (m+1)" Z(mﬂ)' Z(m+1)' )

k= 1=1

giving the geometrical progression in the last member sum. This progression is summable by |b| <m+1 and then

n—1 | n—1 1
: . . Z b . Z b 1 a(m+1
X (t)=ggxn(t)=£g[a(1+ W}]:am(H (m+1)']:a1 b :m(+1—g' (100)
Tm+l

1=1 1=1

For avoiding triviality, the parameter a e R\{O} . The theorem, generalizing the Theorem 1 and Theorem 5, has been

proved.
Solving the integral equation (17), generalizing the equations (7) and (11)

Theorem 12. The mapping in (17) has the unique fixed point X" (t) e X, . that is the solution

o;1]°

. ab(m+1
< (1) = at+—20(m 1) (101)
(m+2)(m+1-b)
of this equation by aeR\{0} and [b|<m+1.
Proof. Not restricted on applying the recurrence (4), take the zeroth approximation (24) and get
1 1
xl(t):at+bjsmx0(s)ds=at+bJ‘sm~0ds:at, (102)
0 0
1 1 me2 1 b
xz(t):at+bjsmxl(s)ds=at+b'|.smasds=at+ab > —at+ 22 (103)
d i m+2|0 m+2

1
X ()= at+bJ‘s’"x2 (s)ds=
0
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m+2 1 m+1 |1

m+1)(m+2)|

1
=at+bjsm(as+ ab jds=at+ab S
g m+2

+ab’
m+2 (

b :

ab ab’
=at 104
ez (men(me2) (104

1 1
m m ab ab?
x4(t):at+b!s x3(s)ds:at+b!s £a5+m+2+(m+1)(m+2)JdS:

Sm+2 ! m+1 ! m+1 '
=at+ab—— +ab’ ————— +ab'———————| =
m+2| (m+1)(m+2)|, (m+1)° (m+2)|
2 3
a2 ab ab (105)

+ + .
m+2 (m+1)(m+2) (m+1)2(m+2)
So, for ne N\{l} the n -th approximation

1
X, (t)= at+bJ‘smxn_1 (s)ds=
0

m+1 1

1 n-2 K n-2 k
:at+bjsm aS+aZb—H ds=at+ ab + ab b H-S =
& (m+2)(m+1) m+2 m+24=(my1) m+l|)

ab  ab < b ab b
—at = at 1 , 106
a+m+2+m+2z(m+1)k a+m+2[ +Z(m+1)kJ (106)

k=1 k=1

0

giving the geometrical progression in the last member sum. This progression is summable by |b| <m+1 and then

. ab b
t)=1 t)=1i t 1 =
X() nlgloxn() nlfolo[a+m+2{ +Z(m+l)kﬂ

k=1

b . b ab 1 ab(m+1)

lim| 1 =at . =at . 107

“‘{*Zkl (m+l)kJ T2 b me2)(me1-b) (107
m+1

a
=at+
m+ 2 n>x

For avoiding triviality, the parameter a e R\{O} . The theorem, generalizing the Theorem 2 and Theorem 6, has been

proved.
Solving the integral equation (18), generalizing the equations (8) and (12)

Theorem 13. The mapping in (18) has the unique fixed point X" (t) e X, [0:1]° that is the solution

. ab(m+2
X (t)=a+ ( ) t (108)
(m+1)(m+2-b)
of this equation by ae R\ {0} and |b| <m+2.
Proof. Not restricted on applying the recurrence (4), take the zeroth approximation (24) and get
1 1
xl(t):a+bjtsmx0(s)ds:a+bjtsm~Ods=a, (109)
0 0
1 p Sm+1 ! ab
xz(t):a+bj.tsmx,(s)ds=a+bJ-ts’“ads:a+abt =a+ t, (110)
g g m+1|0 m+1
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X (t) a+bjtsx ds—a+bJ‘ts [a+—bls)ds

m+
m+1 ! m+2 ! 2
=a+abt +ab’t > | ab t, (111)
|0 (m+1)(m+2 |0 m+1 (m+1)(m+2)
L 2
x4(t)=a+bjtsmx3(s)ds:a+bJ‘ts’“(a+ mafls+(m+3t()m+2)sts:
0 0
m+1 ! m+2 ! m+2 !
=a+abt tabt— | +ab’t———| =
+1|, (m+1)(m+2)| (m+1)(m+2)°|
2 3
g g, @ P t. (112)

m+1  (m+1)(m+2) (m+1)(m+2)2

So, for ne N\ {1} the n -th approximation

1 ! b n-3 bk
xn(t):a+bjtsmxn1(s)ds=a+bjtsm(a+ D g )k]ds:
0 0

m+1 o (m+2

m+1 1

s ab’t < b* s™?
m+1], - m+14=(m+2)" m+2|

ab ab < b ab b
=a+ t+ t =a+ t| 1+ e 113
m+1  m+l ;(mz)k m+1 [ ;(mz)kJ (13)

giving the geometrical progression in the last member sum. This progression is summable by |b| <m+2 and then

=a-+abt

. ab b ab b
X (t)=limx, (t)=1lim|a+——t| 1+ » —||=a+ tlim| 1+ =
® N (1) n%[ m+1 { kz_;(m+2)kﬂ m+1 n%{ kz_:‘(m+2)kJ

abt 1 ab(m+2)
m+1_ (m+1)(m+2-b)

m+2

(114)

For avoiding triviality, the parameter a € R\ {O} . The theorem, generalizing the Theorem 3 and Theorem 7, has been

proved.
Solving the integral equation (19), generalizing the equations (9) and (13)

Theorem 14. The mapping in (19) has the unique fixed point X" (t) e X, ., that is the solution

[0:1]

‘ a(m+2)
X (t)=——7—=t 115
(t) m+2-b (115)
of this equation by aeR\{0} and [b|<m+2.
Proof. Not restricted on applying the recurrence (4), take the zeroth approximation (24) and get
1 1
x (t)=at+ bJ.tsmx0 (s)ds=at+ bJ.tsm -0ds=at , (116)
L ! Sm+2 ! ab
xz(t):at+bjtsmx1(s)ds=at+bItsmasds:at+abt =at+ t, (117)
d . m+2|0 m+2
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1 1
m m ab
x3(t):at+b'(|:ts xz(s)ds=at+b!ts (as+m+2sjds=

m+2 1

=at+abt +ab’t =at+ t+ t, (118)

m+2 (m+2)2|0 m+2  (m+2)

!

1 1 5
x4(t)=at+bJ.tsmx3(s)ds:at+bJ.tsm[as+ ab o, @b ? s}ds:
0 0

1

m+2 m+2 m+2

+ab’t +ab’t

=at+abt 5
2| (m+2) ,

b t+ t+ -t (119)
m+

— =
(m+2) .
So, for ne N\ {l} the n -th approximation

1 1 n-2 K
X, (t)=at+ bJ‘ts”‘xml (s)ds=at+ bJ‘tsm (as + aszb—k]ds =
d d =4 (m+2)

me2 || n-2 bk Sm+2 1

+ abt

=at +abt o =
20 e (m+2) m+20

m+

=at+
m+2 m Z m+2

k=1 =1

bk+l n-| bl
=at| 1+ =at| 1+ , 120
( m+2 Zm+2k“J { Z(erz)'} (120)

giving the geometrical progression in the last member sum. This progression is summable by |b| <m+2 and then

X (t)= lim x, (t)= rl,if}o[a{l + iﬁﬂ =at rlgg{l + iﬁ} =

a(m+2
Lot L g M*2 _a(m+2)
b m+2-b m+2-b

m+2

(121)

For avoiding triviality, the parameter a e R\{O} . The theorem, generalizing the Theorem 4 and Theorem 8, has been

proved.
Solving the integral equation (20), generalizing the equation (18)
Theorem 15. The mapping in (20) has the unique fixed point X" (t) e X, [0:1]° that is the solution

ab(m+q+1)
(m+1)(m+qg+1-b)

X (t)=a+ tf (122)

of this equation by a€R\{0} and |b|<m+q+1.
Proof. Not restricted on applying the recurrence (4), take the zeroth approximation (24) and get

1 1
xl(t)=a+bjtqsmx0(s)ds=a+bjtqsm~Ods=a, (123)

m+1 1

car P g (124)

+1|0 m+1

1 1
X (t)=a+ bj‘tqsmx1 (s)ds=a+ bJ.tqsmads =a-+abt? ;
0 0
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X (t) a+bj‘tqsx )ds—a+bJ‘tq (a+ bsq)ds=
m+1

1

m+1 Sm+q+1 | abz
=a+abt® +ab’t? 9+ t9, (125)
+ +0+ + + +0+
(m+1)(m+q 1| m 1 (m+1)(m+q+1)
1
ab ab’
x4(t):a+bjtqsmx3(s)ds:a+bjtqsm(a+m+lsq+(m+1)(m+q+l)quds:
0 0
ml |t m+g+ ! m+q+ !
=a+abt* | +ab’t s | +ab’t’ s | =
, (m+1)(m+q+1)|0 (m+1)(m+q+1)2|0
2 3
_ar B g ab t9 4 ab 9, (126)

m+1 +(m+1)(m+q+1) (m+1)(m+q+1)°

So, for ne N\ {1} the n-th approximation

1 1 n-3
xn(t):a+bjt“smxnl(s)ds:a+bjtqsm(a+ s J =
0

sy m+q+l
m+11 q k m+q-+1 1
Casabt®S abt Z b s | _
m+1| m+1 ko(m+Q+1) m+q+1|0
n-2 K n-—2 k
=a+ ab t9+ ab tqz b C=a+ ab te 1+Zb—k , (127)
m+1 m+1 o (m+q+1) m+1 = (m+q+1)

giving the geometrical progression in the last member sum. This progression is summable by |b| <m+qg+1 and then

N ab n-2 bk
X (t)=limx, (t)=1lim|a+ tt 1+E— =
® N (® n%[ m+1 [ i (m+q+1) J]

—a+—tqhm
’H‘”[ Z m+q+1 ]

abt® 1 ab(m+q-+1)
=a+ =a+
m+1 __ b (m+1)(m+q+1-b)

m+q+1

te. (128)

For avoiding triviality, the parameter a € R\ {0} . The theorem, generalizing the Theorem 13, has been proved.

Solving the integral equation (21), generalizing the equation (19)

Theorem 16. The mapping in (21) has the unique fixed point X' (t) e X, ., that is the solution

[o:1]°

ab(m+q+1)

K ()=t o mrar1ob)

£ (129)

of this equation by aeR\{0} and [o|<m+q+1.
Proof. Not restricted on applying the recurrence (4), take the zeroth approximation (24) and get

1 1
X (t)=at+ bJ‘tqs’“x0 (s)ds=at+ bJ‘t"sm -0ds =at , (130)
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m+2 L

1 1
X, (t)=at+b|ts"x (s)ds=at+b|t%s"asds = at + abt* S ab
? ) ' ) m+2

=at+

t, 131
5 (131)

0

1 1
ab
X, (t :at+b'[t“smx S ds:aterItqsm as+——s |ds=
(O=atb s o ( 2]

m+2 !

sm+q+1 ab2
| t tq

b*t
e (m+2)( m+q+1| m+2 +(m+2)(m+q+l)

= at + abt? (132)

m+2

ab?

1
x4(t):at+bjtqsmx3(s)ds:at+bjtqsm[as+ 0 g, )sq}ds:
0 0

m+2 (m+2)(m+q+1

1
m+2 !

m+q-+1 ! m+q-+1
s | s

=at + abt® +ab’tt

m+2

+ab’t? | =
(m+2)(m+q+1)|, (m+2)(m+q+1)°|
ab ab’ ab’

=at+ t9+ t9+ t9. 133)
m+2  (m+2)(m+q+1) (m+2)(m+q+1)2 (

So, for ne N\ {1} the n -th approximation

1 1 n-2 bk
X, (t :at+bItqsmxn_ S ds:aterJ‘tqsm as+as* ds=
(t) | 10 0 ;(mz)(mqﬂ)kl

mi2 |! n-2 bk gmHa+ |1

_ ¢S abt* . 3
=at+abt m+2| m+ZZ:(m+q+1)"‘1 m+q+1| B
k=1 0

ab ., ab x> b ab [, x> b
—ate Y cmate— 0 1y | (134)
m+2 m+2 (m+q+1) m+2 o (m+q+1)

k=1

giving the geometrical progression in the last member sum. This progression is summable by |b| <m+q+1 and then

n-2 bk
1+ —||=
[ ;(m+q+1)k]
=at+ tqhm
"%’[ kzm+q+1 ]

e 1 Cats ab(m+q+1)
m+2 b (m+2)(m+q+1-b)

m+q+1

n—oo nN—o0

X (t)=limx, (t)= lim[a +

to. (135)

For avoiding triviality, the parameter a € R\ {0} . The theorem, generalizing the Theorem 14, has been proved.
Solving the integral equation (22), generalizing the equation (21) globally in polynomializing f (t) part
Theorem 17. The mapping in (22) has the unique fixed point X' (t) € X [o.1]» that is the solution
. b(m+g+l),, & g
=Zat 1 e Z— (136)
m+q+1 b &m+i+l

of this equation by & € R ¥ i=0, p in 3i, {0, p} with & eR\{0} and |o|<m+q+1.
Proof. Not restricted on applying the recurrence (4), take the zeroth approximation (24) and get
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p

p ! ! P
= Z:aiti +bJ.tqsmx0 (s)ds= Z:aiti + bjt“sm -0ds = Z:aiti , (137)

i=0

1 p

Zat +bjtqs X ( ds_Zat +bJ-tqsm Za,s ]ds—Zat +btq2[ .f m+'ds]_
0
Zp:at +btq2[ m:':il J Zat +bt“Zm+i+1 (138)
:gait‘+b!t“smxz(s)ds:iaiti+b!tqsm(gaisi+bsq§—mf;+les:

i=0 i=
i=0
p _ P 1 _ p ab 1
=) at'+bt a.jsm+'ds i s™ds || =
Z ' Z ' +Z m+i+1
i=0 i 0 i=0 0
m-+i+1

Srennf g S o
= » at' +bt" 8 —— + a,b -

— = mti+l| | = (m+i+1)(m+q+1) |0
c a

t' +Dbt¢ L+ bt i =

Za+ Zm+|+1 ;(m+i+1)(m+q+l)

p p 2 P
i a, b*td a,
=) at' +Dbt" L+ L 139
Z ' ;m+i+1 m+q+lzm+i+1 (139)

i=0 i=0

p 1
- Zaiti +bJ‘tq:~:mx3 (s)ds=
i=0 0
P 1 P p 2 P
_ . a b*s"
~Yat bjtqm S +bs? |
Za' " ® (Zals o ;m+i+1 m+q+1 Z:m+|+1]

p P P p p 2
= Z:aiti +btq jsm“ds +Z a‘_b Ism Z a‘t_) Ism*qu -
_ — m+|+10 m+q+1 - m+|+10

i=0

1 p Sm+q+l |1 p R Sm-f-q+1 |1
+ ab + ab
0 ; ' (m+i+1)(m+q+1)|0 ; Co(mi+l)(megr1)’

0
:Zp:ait‘+btq2— bthz % +b3tqz % -
. —im+i+] (m+i+1)(m+q+1) —(m+i+1)(m+q+1)
P

P p 2 P 3
i 3 bt* b’t? 3
= E at +btq§ E ; E — . (140)
m+|+1 m+q+1 m+|+1 m+q+1) - m+i+1

i=0 i=0

So, for ne N\ {1} the n -th approximation

p 1
- Zaiti + bjtqsmxn—l (s)ds=
P

b*sd
q —
at +bjt [E as + E [ m+q+1 kl E m+|+1]]ds

i=0

n-2 p 1
Zat +btq2[ I deS]-l‘btqu:[ (mq+1) = IZ{miﬁ):l m*qu]]

0 i=0
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P ) p msisl |1 n-2 k p m+q+1 !
:Zait'ertqz 3 > : +btqz b—k_lz a; _ > |
— = mti+l ~| (m+q+1)" & " (m+i+1)(m+q+1) |0

3 | b Ny a |
Zat+btqz m+i+1 btqzl(m+q+1)k;m+i+1]_

k=1
n-2 Kk
- b
t' + bt ' 1 - 141
Za * Zm+|+l{ +;(m+q+l)k]’ ( )

giving the geometrical progression within the last brackets. This progression is summable by |b| <m+qg+1 and then
n-2 bk
X (t)=limx, (t)=1lim at' +bt* L+ Yy ——||=
() n—oo n—ow Z Z +|+1[ Z(m‘f‘q-f-l)k]

p
=Za,t‘+btq lim| 1 =
|0m+|+1n»w m+q+1)

i=0

b : 1 : b(m+g+1) , <~ &
= t' +bt? — —_— 142
Za' " Zm+|+1 b Z m+q+1-b 2m+i+1 (142)

=0 i=
m+q+1

For avoiding triviality, the set of polynomial parameters { ai}ip:O should contain at least one nonzero element, that is

aeR Vi :ﬁ in 3i, {Tp} with &, € R\{O} . The theorem, generalizing the Theorem 16, has been proved.

Tabulating the integral equations (6) — (22) solutions

It is easy to learn that all the proved integral equations (6) — (22) to have their unique solution X" (t) e X, [0:1]

are contractive mappings [2, 4, 5, 8]. Those unique solutions are being tabulated as follows.

Table 1
The exact solutions of the simplest integral equation (3) forms, having applied their being contractive mappings

Integral equation (3) form
by aeR\{O} and 8, eR Vi :ﬁ

in 3i, c {Tp} with 3, € R\ { O} ’ Integral equation (3) form exact solution

q=0, m>0, peNU{0}

x(t)—a+b£x<s)ds K () =72 ol <1
x(t)—at+bj:x(s)ds X (t)=at+ gy bl
x(t)—a+bjtx(s)ds X' (t)= a+it;t <2
x<t>—at+bjtx<s>ds K (1) =52t <2
x(t)=a+bjsx<s)ds K ()= |pl<2
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Integral equation (3) form

by aeR\{0} and 8 eR Vi=0,p
in Ji, e {ﬂ} with 8, R\ { O} ’ Integral equation (3) form exact solution

q=0, m>0, peNU{o}

1
. 2ab
x(t):at+bJ.sx(s)ds X (t)=at+m, | < 2
0
1
. 3ab
— t)= ———t, |b|<3
x(t) a+b_!.tsx(5)ds X (t) a+2(3_b) <
1
x(t):at+bItsx(s)ds x*(t)::—abt, o] <3
0
1
: ab(q+1)
x(t)=a bJ.thsds t)= t%, |b 1
=asofex() ¢ (0)=as 28 pl<qs
1
. ab(q+1)
— q t)=at —tq b 1
x(t) at+b‘!.t x(s)ds X (t) a+2(q+1—b) . o] <q+
1 1
x(t):a+bJ.s"‘x(s)ds X*(t):a(m—+)’ | <m+1
! m+1-b
1
. ab(m+1)
x(t) at+b‘!.s x(s)ds X (t) a+(m+2)(m+1—b)’| |<m+
1
. ab(m+2)
= m t)= t,|b 2
x(t) a+b!ts x(s)ds X (t) a+(m+1)(m+2—b) , o] <m+
1
x(t)=at+bjts’“x(s)ds X' (t) = a(m+2)t’ Ib|<m-+2
4 m+2-b
x(t)= bltq "X(s)d X (t)=a+ ab(m+q-+1) t?, |b|<m+q+1
(6)=a+ J s"x(s)ds T (m+1)(m+q+1-b) a
0
x(t)=at+bjtqsmx(s)ds X (t)=at+ ab(m-+g-+1) t4, |bj<m+q+1
) (m+2)(m+q+1-b) ’
P ! P P
4 . i b(m+qg+1) a
x(t)= ) at' bjtqsmx s)ds t)= ' t9. L |b 1
(® ; . ) (5) x (1) ;a, +m+q+1—b ;m+i+1 ol <m-+a+

Speaking strictly, the solutions (23), (31), (38), (45), (52), (59), (66), (73), (80), (87), (94), (101), (108), (115),
(122), (129) may be driven out directly from the solution (136), tabulated in the last line of table 1. And particularizing

the functional space X [0:1] [9], containing all these solutions, as well as the other functions x(t) , defined on the unit
segment [O; 1], does not matter at all, because there may be practically any functional space with [O; 1] -defined

measurable elements.

Conclusion

Having proved the 16 simplest integral equation forms (6) — (21) to hold their unique and exact solutions
X' (t) e X, as (23), (1), (38), (45), (52), (59), (66), (73), (80), (87), (94), (101), (108), (115), (122), (129)

correspondingly, and the generalized integral equation form (22) to hold its unique and exact solution X (t) e X, [0:1] 38

(136), the table 1 gives the possibility to solve at once a wide range of practical problems, modeled in the investigated
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simplest forms of the integral equation (3), particularized the mapping (1). In proceeding the investigation, the kernel
K(t,s)e X, x Xy, - taken here as K (t,s)=bt%s™ with >0 and m>0 generally, is going to be complicated.

For instance, it must be exponential K (t, S) =be'™® as many practical problems issue from.
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